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Lecture outline

Transverse multi-bunch instabilities

Resistive wall transverse coupled-bunch instability
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Long-range and short-range wake fields

Depending on the source of the wake field, the wake function can fall off rapidly
with distance, on a scale comparable to the length of a single bunch. Such
“short-range” wake fields are important for single-bunch instabilities like BBU
studied in the previous lecture.
In other cases, the wake function extends over the distance from one bunch to
another. This is a “long-range” wake field; it can drive coupled-bunch
instabilities which are the subject of this lecture.

In case of long-range wake fields, we can often treat each bunch as a single
“macroparticle”. This requires:

the distance between the bunches to be much larger than the length of the
bunches;

all particles in a given bunch see the same wake field, and respond to it in
the same way;

the bunch centroid can move, but the distribution of the bunch around the
centroid remains unchanged.
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Equation of motion for betatron oscillations

We now study a transverse coupled bunch instability of a train of
bunches in a circular accelerator.

�
�

�

M bunches in a ring.

In the absence of any wake fields, the equation
of motion for the nth bunch moving in a storage
ring can be written as

ÿn +ω
2
βyn = 0 (8.1)

where yn is the transverse offset of bunch n and
ÿ = d2y/dt2. The “averaged” betatron
frequency is

ωβ =
2πνβ
T

(8.2)

where νβ is the betatron tune and T = C/c is the revolution period, C
is the circumference of the ring (we use a smooth focusing approximation
for the betatron oscillations).
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Account of transverse wake

We now add transverse forces from the wake fields as driving terms on the
right-hand side of the equation of motion. Bunches are considered as point
charges.

�

�

�

����

Consider bunch n and another bunch, m,
moving ahead of n at a distance sn,m. Bunch m
generates the transverse wake per unit length
w̄t(sn,m)ym. With account of the wake field
transverse force (= Qew̄t(sn,m)ym)

ÿn(t) +ω
2
βyn(t) =

Qe

mγ
w̄t(sn,m)ym

We need to take ym at time when the driving particle was at the current
location of yn, that is ym(t − sn,m/c)

24,

ÿn(t) +ω
2
βyn(t) =

Qe

mγ
w̄t(sn,m)ym

(
t −

sn,m
c

)
(8.3)

24
Think about wake in a cavity.
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Many bunches, account of earlier revolutions

�
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Consider now M bunches uniformly distributed
in a ring. The bunches are counted from 1 to
M, where the first bunch is at the tail of the
train, and the M-th bunch is located at the
head (the bunch count increases in the direction
of motion)

ÿn(t) +ω
2
βyn(t) = A

∞∑
k=0

M∑
m=1

w̄t(sn,m + Ck)ym
(
t −

sn,m
c

− Tk
)

(8.4)

Here sn,m is the distance between the bunch n and bunch m, which is measured
along the circle in the direction of motion from bunch n to m; sn,m is a positive
number. The distance sn,n+1 is equal to the interbunch distance sb, the distance
sn,n−1 is equal to (M − 1)sb. The wake is defined so that w̄(s) = 0 for s < 0.
The value of k = 0 corresponds to the wake that is generated during the current
revolution; k > 0 give the wake that was created on previous revolutions.
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Change summation limits

The parameter A is

A =
Ne2

mγ

where N is the number of particles in each bunch.
Eq. (8.4) is written so that the argument in the wake function is always
positive. We will now modify it using the property of the wake w̄t(s) = 0
for s < 0. This allows us to extend the summation over k from −∞ to∞, ∞∑

k=0

→ ∞∑
k=−∞,

because the added new terms have a negative argument in the wake and
hence do not contribute to the sum.
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Manipulate equations

�

��

�

��

��
We can now redefine sn,m considering it as a
difference of longitudinal positions sm and sn of
the two bunches in the ring, sn,m = sm − sn (sm
and sn are measured along the beam path from
an arbitrary established origin s = 0). If m > n,
then sm > sn and the formula gives the correct
value for sn,m. For m < n, we have sm < sn and
sn,m = C + sm − sn.

However, since we carry summation over k from −∞ to ∞, the additional term
C in sn,m does not change the result, because it can be eliminated by the
change of the summation variable k → k + 1. Hence,

ÿn(t) +ω
2
βyn(t) = A

∞∑
k=−∞

M∑
m=1

w̄t(sm − sn + Ck)ym

(
t −

sm − sn
c

− Tk

)
(8.5)
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The frequency ω of the oscillations

Since we have a linear system of equations, we seed a solution
yn = ŷne

−iωt . A mode with Imω > 0 means an instability. This is the
coupled-bunch transverse instability (CBTI). The frequency ω satisfies
the dispersion relation

(ω2
β −ω

2)ŷn = A
∑
k,m

w̄t(sm − sn + Ck)ŷme
iω(τm−τn)+iωTk (8.6)

Here we introduced a new variable τn = sn/c .
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Carry our summation

We can carry out the summation over k in Eq. (8.6) by using a periodic
δ-function ∞∑

k=−∞ δ(x − k) =
∞∑

j=−∞ e2πijx (8.7)

We have

I ≡
∑
k

w̄t(sm − sn + Ck)e iωTk

=

∫∞
−∞ dx w̄t(sm − sn + Cx)e iωTx

∞∑
k=−∞ δ(x − k)

=

∫∞
−∞ dx w̄t(sm − sn + Cx)e iωTx

∞∑
j=−∞ e2πijx

=

∞∑
k=−∞

∫∞
−∞ dx w̄t(sm − sn + Cx)e iωTx+2πikx .

The last integral can be expressed in terms of the transverse impedance Zt(ω).
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Express through impedance

See the definition (4.5)

Zt(ω) = −
i

c

∫∞
−∞ dzw̄t(z)e

iωz/c

This yields ξ = Cx + sm − sn,

I =
1

C

∞∑
k=−∞

∫∞
−∞ dξw̄t(ξ) exp

[
i
ξ− (sm − sn)

c
(ω+ kω0)

]

=
ic

C

∞∑
k=−∞ exp [−i(τm − τn)(ω+ kω0)]Zt(ω+ kω0)

The term with the frequency ω cancels a term in Eq. (8.6). Replace
(τm − τn)ω0 = 2π(m − n)/M,

(ω2
β −ω2)ŷn =

icA

C

∑
k,m

e−2πik(m−n)/MZt(ω+ kω0)ŷm
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The final answer

There are different modes, or patterns, of oscillations. Each mode is
marked by an integer value of p, p = 0, 1, 2, . . . ,M − 1. The solution
corresponding to one mode is sought as ŷn = Ype

2πipn/M . The frequency
of the p-th mode ωp is found from

ω2
β −ω

2
p =

icA

C

∞∑
k=−∞Z (ωp + kω0)

M∑
m=1

e−2πi(k−p)(m−n)/M

The last sum is equal to zero unless k = Mq + p, where q is an integer,
in which case the sum is equal to M. This reduces the dispersion relation
to the following form

ω2
β −ω

2
p =

iAM

T

∞∑
q=−∞Zt(ωp + pω0 +Mqω0)

To find the frequency shift ∆ωp = ωp −ωβ, assume |∆ωp |� ωβ and
use ω2

β −ω
2
p ≈ −2∆ωpωβ.
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More convenient form for the frequency shift

∆ωp = −
iM

2Tωβ

Ne2

mγ

∞∑
q=−∞Zt(ωβ + pω0 +Mqω0) (8.8)

Use the beam current in the ring I and the Alvfen current IA

I =
MNe

T
, IA =

4π

Z0c

mc3

e
= 17.045 kA (8.9)

We can go beyond the smooth focusing approximation replacing
ωβ = 2πνβ/T with

2πνβ =

∫
ds

β⊥
→ C

〈β⊥〉
(8.10)

We then obtain

∆ωp = −i
4π

Z0

c

2γ

I

IA
〈β⊥〉

∑
q

Zt(ωβ + pω0 +Mqω0)

Reminder: Zt is the impedance per unit length.
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Impedance varies around the ring

In practical situations the impedance varies from one location in the ring
to another. As more rigorous analysis gives in this case

∆ωp = −i
4π

Z0

c

2γ

I

IA

∑
q

〈β⊥Zt(ωp + pω0 +Mqω0)〉

Impedance at locations with large value of the beta-function is more
harmful for stability.
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Animation

See the animation. Note the direction of propagation of the wave for
p = p0 and p = M − p0.
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CBTI for resistive wall wake

We now derive CBTI for the coupled bunch instability driven by the resistive
wall wake. We start from Eq. (8.8):

∆ωp = −
iM

2CTωβ

Ne2

mγ

∞∑
q=−∞Z◦t [ωβ + (qM + p)ω0] , (8.11)

where Z◦t = CZt is the transverse impedance for the whole ring.
We can carry out the summation analytically, if we use wake fields instead of
impedances. In terms of wake fields, Eq. (8.11) can be written as follows

∆ωp = −
Ne2

2mcγTωβ

∞∑
n=1

w̄◦t (nsb)e
2πi(p+νβ)n/M (8.12)

where sb is the distance between the bunches, sb = C/M and w̄◦t the wake for
the ring (= Cw̄t).
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CBTI for resistive wall wake

Here is the proof of this. We can extend the summation over n to −∞,
because the wake is zero there:

∞∑
n=−∞ w̄◦t (nsb)e

2πi(p+νβ)n/M

=

∫∞
−∞ ds w̄◦t (s)e

2πi(p+νβ)s/sbM
∞∑

n=−∞ δ(s − nsb)

=

∫∞
−∞ ds w̄◦t (s)e

2πi(p+νβ)s/sbM
1

sb

∞∑
q=−∞ e2πiqs/sb

=

∞∑
q=−∞

ic

sb
Z ◦t (ω0(p + νβ) +ω0Mq) (8.13)
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CBTI for resistive wall wake

For the resistive wall the transverse wake decays with distance as
w̄◦t (s) = Ds−1/2 (see Eq. (5.16)) where D is a constant, and the sum can be
computed analytically in terms of the polylogarithm function Li 1

2
(x):

Li 1
2
(x) =

∑∞
n=1(x

n/
√
n), so that

∆ωp = −
Ne2

2mcγTωβ
w̄◦t (sb)Li 1

2
(e2πi(p+νβ)/M) (8.14)

The function Im Li 1
2
(e2πix) is a periodic

function with the period equal to 1. It
has a singularity when x → 0. Its
imaginary part diverges,
Im Li 1

2
(x)→ +∞ , when x → +0 and

Im Li 1
2
(x)→ −∞, when x → −0. Blue

line—real, red line—imaginary parts of
Li 1

2
(e2πix). ��� ��� ��� ��� ��� ���
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CBTI for resistive wall wake

This means that the maximum growth rate is attained for the minimal
value of the argument (p + νβ)/M, when it is negative. The most
unstable modes have negative p = −(1 + {νβ}) where {νβ} is the integer
part of the tune with the argument of the Li 1

2
function equal to

−(1 − [νβ])/M, where [νβ] is the fractional part of the tune. For small
negative values of the argument x , the function Li 1

2
(e2πix) can be

approximated by (1 − i)/2
√
−x which gives the following equation for

the approximate value of the growth rate of the instability

Im∆ωp =
Ne2

4mcγTωβ
w̄◦t (sb)

√
M

1 − [νβ]
(8.15)
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CBTI for resistive wall wake

Growth rates of vertical coupled-bunch modes in the NLC Main Damping
Rings25. The ring is assumed to be uniformly filled with 714 bunches.
Red points show the growth rates assuming the nominal bunch charge.
Blue points are correspond to a uniform fill, and red point to a
non-uniform one.

25
A. Wolski. Paper “Resistive Wall Instability in the NLC Main Damping Rings”,

http://repositories.cdlib.org/lbnl/LBNL-59526

20
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CBTI for resistive wall wake

Growth rates of various modes in a uniformly filled ring. Black points:
tracking simulation. Red line: analytical estimate. Modes with positive
growth rates are unstable.
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